
Clustering of order arrivals, price impact and trade

path optimisation

Patrick Hewlett∗

May 6, 2006

Abstract

We fit a bivariate Hawkes process to arrival data for buy and sell trades in FX
markets. The model can be used to predict future imbalance of buy and sell trades
conditional on history of recent trade arrivals. We derive formulae for the raw price
impact of a trade as a function of time assuming that trade arrivals are governed by
a Hawkes process and that the price is a martingale, and show that the price impact
of a series of trades is given by superposition of their individual price impacts. We
use these formulae to parameterise a model for optimal liquidation strategies.

1 Introduction

It is a well known feature of many financial markets that trading activity tends to
cluster in time, and that trades of the same sign tend to cluster together in the se-
quence of buys and sells. Such clustering can be modelled with a multivariate point
process. Liquidity providers1 (“market makers”) in the FX market are well aware
of this clustering, and anecdotal evidence suggests that they pay close attention to
the pattern of arrivals of buy and sell orders when setting prices.

In this paper we focus on a model in which order arrivals are governed by a
special class of point process, the Hawkes self-exciting process; in this case, the
mathematical solution of the market maker’s problem has a particularly tractable
form. We also see that the Hawkes process can be fitted quite successfully to
empirical order arrivals data.

In contrast to liquidity providers, liquidity demanders (“traders”) often split
large trades into multiple tranches over a period of minutes or hours, in order to
alleviate market impact costs. One of their concerns is that market makers will
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1The FX market is arranged as an electronic limit order book, so all participants have the opportunity
to act as market makers. In what follows we assume that there is a single market maker who sets
competitive prices.
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guess from their pattern of trading that they are in the process of executing a large
trade, and penalise them accordingly through less favourable prices. This activity
is formulated in our model as the market makers trying to predict future trading
from past trading. We assume that market makers form their expectations of the
timing and direction of future trading based on a Hawkes process model, and that
they set prices competitively based on these expectations.

The trader is then faced with the usual dilemma: trade too quickly and suffer
severe market impact costs; trade too slowly and run the risk of adverse price
movements before the trade is completed. Whilst models describing this dilemma
are well developed, methods of parameterising them are not. This work offers a
method of parameterisation which only requires data on the trade arrival process,
which is readily available to FX market participants.

It should be emphasised that we do not attempt to offer a game-theoretic so-
lution for the behaviour of the trader and market-maker. Instead, we take the
empirical clustering of trades as given, compute how the market-maker ought to re-
act to trading patterns assuming that the clustering is well described by a Hawkes
process, and finally compute how the trader ought to behave given the market-
maker’s (empirically) rational response to trading. This allows us to build a prac-
tically applicable model of the trading environment without needing to model the
heterogeneity of traders and their motivations.

This paper is organised as follows. Section 2 reviews past work on trade arrival
processes and multiple-tranche trading optimisation. In Section 3 we present the
model for the market-marker’s problem and discuss the mathematical properties of
Hawkes processes that allow a solution to be developed. In Section 4 we describe
the dataset and fit the Hawkes model. In Section 5 we describe the trader’s problem
and compute solutions using the parameters obtained above. Section 6 concludes.

2 Literature Review

An introduction to the mathematical theory of point processes is given in [8].
Hawkes processes, first introduced by [23], are a particularly tractable type of point
processes for our purposes, because closed form expressions exist for the expected
future number of arrivals of each type and current intensity given the observed
history of the process. Estimation is also relatively straightforward (see e.g. [28]).
The state of the art in estimation and model validation for multivariate Hawkes
processes in finance is summarised in [6].

There is a growing literature on the application of point processes to high fre-
quency financial data. Important early work focuses on modelling inter-event du-
ration ([13], [14]) and the effect of duration on price impact and trade sign auto-
correlation ([10]). [12] extend these models to allow for the censoring of quotes
after a trade by intervening trades. We are concerned here with predicting future
trades given the pattern of past trades. These duration-based models are somewhat
intractable for this purpose in a multivariate context.

In high frequency finance, rounding of times to the nearest second is common.
A half-way house between true point process modelling and discrete time mod-
elling is obtained by binning data into discrete intervals (which may or may not
correspond to the measurement frequency). [22] and [9] approach modelling of
trades and quotes in this spirit. Whilst we believe that we could have developed



our model along these lines, we felt that the advantages of using “true” continuous
time processes outweighed possible disadvantages2.

The use of Hawkes processes in particular for modelling order arrivals and mi-
crostructure scale price movements is investigated by [7], [6], [25], [3]. Elsewhere
in the mathematical finance literature, Hawkes processes have been advocated for
modelling of credit contagion [18] and clustering of extreme price moves [26].

Much thinking on the optimal way to split a large order into tranches over time
is based on ideas advanced in [4], [2]. Despite (or perhaps because of) the practical
relevance of such models, there is little published on how to parameterise them. [1]
details one strategy for parametrisation, which requires as data the ex-post cost of
various trading strategies. By contrast, the model we present in Section 5 could
in principle be parameterised using only data on the times and directions of order
arrivals.

3 A self-exciting model of trade arrivals

Intensity-based approaches focus on arrival intensities for the counting processes

N
(i)
t . Arrival intensity λ

(i)
t conditional on a filtration Ft is defined by

λ
(i)
t |Ft = lim

δt→0

1

δt
E(N

(i)
t+δt − N

(i)
t |Ft) . (1)

In the case of purely self-exciting processes, the intensity is a functional of past
arrivals3. For a linear self-exciting process, we have

λ
(i)
t := µ(i) +

I
∑

j=1

∫

u<t

hij(t − u) dN (j)
u . (2)

Here µi can be understood as the “base” intensity of arrivals of type i (the intensity
if there have been no past arrivals of any type), and hij the propagator of an arrival
of type j onto the intensity of arrivals of type i in the future. We will be interested
in parametric forms for g — in particular we consider the case where g is a sum of
exponentials:

hij(s) =

K
∑

k=1

αije
−βijs , (3)

so that

λ
(i)
t = µi +

K
∑

k=1

I
∑

j=1

∫

u<t

αije
−βij(t−u) dN (j)

u . (4)

This specification is labelled a Hawkes-E(K) process in [6]. Other forms for h have
been advocated in the finance literature (e.g. power law, Laguerre polynomial).
The advantage of the exponential specification is that the likelihood function can be

2In particular, there is well-developed mathematical machinery for continuous time point processes,
whereas the models of [9] (“CBin models”) are less developed; whilst the mathematical foundations of
point processes may appear to present a barrier to practitioners, the relevant properties can safely be
understood intuitively in this context. Discrete sampling does create a few problems in the busiest FX
markets (e.g. USD/EUR) where the probability of several events in one second is significant.

3in contrast to doubly stochastic processes where there is an unobserved component driving the
intensity.



computed in O(N) steps, whereas for more general g, O(N2) steps will be required.
The importance of long-range dependence and the extent to which a mixture of a
small number of exponentials provides a satisfactory parameterisation is an area
for future research.

3.1 Time domain properties

We now review the time domain properties of a Hawkes E(K) point process that we
will require to develop our model of price formation. We assume that the conditions
for stationarity (see e.g. [8]) are satisfied.

3.1.1 Expected arrivals following a single arrival

When a new arrival occurs, expectations of future arrivals are increased. The new
arrival is expected to cause future arrivals directly, via h; these are then expected
to cause further arrivals, so that the original arrival can be thought of as causing
a cluster or cascade ([24]). Let fij(s) denote the increase in intensity of arrivals of
type i caused (directly and indirectly) by an arrival of type j at time zero. Then f
satisfies the following integral equation:

fij(s) = hij(s) +
I

∑

l=1

∫ s

0
hlj(u)fil(s − u) du . (5)

It is easily checked that in the univariate case with a single decay timescale I =
1, K = 1, h(s) = αe−βs, a solution is

f(s) = αe−(β−α)s . (6)

In the multivariate case and and the case where there are multiple decay timescales,
closed form solutions are still available [23]. If h does not have exponential form,
closed form solutions are not necessarily available but direct numerical solution is
straightforward.

3.1.2 Prediction of arrival rates given history

We now consider the problem of predicting the total number of arrivals of each type
arising in some (t, T ) given information at time t. Writing κ(i)(s) = E(λ(i)(s)|Ft),
we have:

κ(i)(s) = µ(i) +
I

∑

j=1

∫

v<t

hij(s − v)dN (j)
v +

I
∑

l=1

∫ s

t

κ(l)(u)fil(s − u) du . (7)

We exploit the linearity of (7) to search for a solution of the form

κ(s) = κ0(s − t) +

∫

v<t

G(s − t; t − v) dNv , (8)

where

κ0(x) = µ +

∫ x

0
κ0(ξ)f(x − ξ) dξ (9)

G(x, y) = h(y + x) +

∫ x

0
G(ξ; y)f(x − ξ) dξ . (10)



We will use this representation to compute the theoretical price impact function
for a given order arrival process. Only for special types of point process can we
write the conditional intensity given observed information in the convenient form
(8). For example, for the autoregressive conditional duration model of [13], such a
representation is not possible.

In the univariate single timescale case, we note that (10) and (5) differ only by
a factor of e−βy in the first term on the right hand side. So in this case we have
G(x; y)=e−βyf(x). In the multivariate and multiple timescale case, we suppose
that closed form solutions for κ0 and G would still be computable using Laplace
transform methods (Cf. [23]), although practitioners may be just as comfortable
with a numerical solution, which in any event only needs to be computed once. In
the non-exponential case, numerical solution is usually mandatory.

3.1.3 Conditional arrival rates

The number of arrivals caused directly or indirectly by an arrival of given type is
not directly observable in a sample time series of a self-exciting process, because
arrivals are also correlated with past arrivals. In order to calculate a longitudinal
conditional expectation, we need to use a two-sided version of (5). Let cij(s) be
the intensity of arrivals of type i at time t + s conditional on an arrival of type j
at time t, defined4 for s 6= 0. Then

cij(s) = hij(s) +
I

∑

l=1

∫ s

−∞

clj(u)hil(s − u) du . (11)

Again, in the single timescale univariate case a straightforward solution exists. We
have

c(s) = µ
β

β − α
+

2β − α

2(β − α)
αe−(β−α)s . (12)

After scaling by the long-run mean arrival rate for the conditioning event, the
function c(s) is known as the covariance density of the process. It represents the
joint arrival intensity of events separated in time by s. A sample covariance density
can be computed using histogram methods.

3.2 Efficient price process

We now consider how market-makers would set prices if order arrivals were governed
by a Hawkes process. We denote the counting processes for arrival of buy and sell
orders by Nbuy

t , Nbuy
t respectively. We suppose that the order arrival process

(Nbuy
t , N sell

t ) is a bivariate Hawkes process, and denote cumulative order imbalance

by Ft := Nbuy
t −N sell

t . The functions κbuy, Gbuybuy etc. are all defined by indexing
processes by {buy, sell} in place of {1, ..., I}.

Our assumptions regarding order submission and price formation are as follows:

1. All individual market buy and sell orders are of a standard size, w.l.o.g. 1.
Only one trade can take place at any instant.

4alternatively, we could add δ(s − 0) to cii(s) and subsume the first term in the equation into the
integral



2. At the end of the trading period, which is assumed to be far away compared
with the timescale of self-excitement of the Hawkes process, the asset is valued
at some initial price P0 plus θ times5 the imbalance of buy orders over sell
orders during the trading period.

3. Market makers are risk neutral, and act to maximise the sum of cash and
inventory value at the end of the trading period.

4. Market makers are perfectly competitive.

5. Market makers set a single bid price, and a single ask price, good for one unit
of asset, and are entitled to revise these prices after every trade.

6. The parameters governing the buy and sell processes are symmetric6.

By Assumptions 3 and 4, market-makers set prices at time t based on their expec-
tations of the price at the end of the trading period, based on observed order flow
at time t. As in e.g. [20], the conditioning information for the bid and ask prices
includes the direction of any trade at time t, whose size is known in advance to be
unity by Assumption 1. Assumption 2 implies that the relevant expected terminal
value is E(P0 + θF∞). So

Pmid
t = P0 + E(θF∞|Ft−) = P0 + θFt + E(θ(F∞ − Ft)|Ft−) (13)

P bid
t = P0 + E(θF∞|Ft− , Market sell at t) (14)

P ask
t = P0 + E(θF∞|Ft− , Market buy at t) (15)

3.2.1 The price impact function

We now show (Cf [5]) that the mid price can be written in the form

Pmid
t = P0 + θ

∫ t

0
I(t − s) dFs , (16)

where I(·) is the impact of a trade through time. We would expect the initial
impact of a trade to be large, corresponding to market-makers’ (justifiable) fears
that it is likely to be followed by more trades of the same sign. As time passes, the
probability of further trades of the same sign decreases, and we would expect the
impact to decay, eventually reaching the permanent impact θ.

To calculate I, we note first that

E(F∞ − Ft|Ft) = E(Nbuy
∞

− N sell
∞

− Nbuy
t + N sell

t |Ft) (17)

can be calculated by integrating out the difference between predicted buying and
selling intensities:

E(F∞ − Ft|Ft) =

∫

∞

s

κbuy(s) − κsell(s) ds (18)

5θ is the permanent price impact of a market order. It can be estimated by regressing price movements
of cumulative order flow with a fairly large sampling interval (e.g. one day), to remove distortions due
to temporary price impact. It is sometimes known as Kyle’s λ; in this paper λ is reserved for intensity.

6This, together with stationarity, guarantees that the expected order imbalance at ∞ exists. We
could in principle build an asymmetric model, but would then have to impose a finite horizon, which is
inconvenient. Such a model might be practically useful, for example where it is known in advance that
there will be a bias towards selling all day.



We then apply (8), noting that the κ0 terms for buying and selling cancel because
we have assumed symmetry of parameters. We get:

E(F∞ − Ft|Ft) =

∫

∞

s

∫ t

0
Gbuybuy(s; t − u) − Gbuysell(s; t − u)dNbuy

u

+

∫ t

0
Gbuybuy(s; t − u) − Gsellbuy(s; t − u)dN sell

u ds ,

(19)

with Gbuybuy etc. defined as in (10). Noting that the first term in (13) can be
written

Ft =

∫ t

0
(dNbuy

u − dN sell
u ) , (20)

we get

I(x) = θ

(

1 +

∫

∞

x

Gbuybuy(u) − Gbuyysell(u) du

)

. (21)

In the case where buying and selling are governed by independent exponential
self-exciting processes with parameters α and β we have

I(x) = θ(1 +
α

β − α
e−βx) (22)

3.2.2 Bid and ask prices

Inspecting (14) and (15), we see that the bid and ask prices differ from the mid
price only by the expected price movement that a trade arrival causes, that is by
I(0). We note that in this model, the information conveyed in a trade arrival does
not depend on the past history of trades. Econometric models such as [10] have
the property that the price information conveyed in a trade tends to be greater at
times when trading is more active. Introduction of such a feature would require us
to make the trade arrival process and price response nonlinear.

4 Estimation

We now fit a Hawkes process to trade arrival data recorded from Reuters D-2000 for
the currency pair EUR/PLN. In order to get a handle on the kinds of effects we are
trying to model, we first examine a histogram of empirical conditional intensity of
buys and sells following a buy trade (Figure 1 - left). This histogram is effectively
a non-parametric estimate of the function c(·) in (11). We see that following a buy
there is a large (initially around threefold) increase in the intensity of buys, and
a small increase in the intensity of sells. In our self-exciting model, this should
correspond to a large self-exciting effect (large positive αbuybuy) and a small cross-
exciting effect7 (small positive αbuysell). Both effects appear to have a characteristic
timescale (β−1) of a few minutes.

7Since these intensities are not deseasonalized, the apparent cross-excitement could be partially due
to seasonality effects — but the separation of timescales makes this unlikely
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Figure 1: Empirical conditional intensity of buys and sells following a buy (left) estimated
with a bin size of 1 second; daily seasonality (right) estimated by Kernel regression with
bandwidth 1/2 hour.

4.1 Data and cleaning

The full dataset consists of records of 25,629 market orders recorded on EBS over
two months for EUR/PLN. Each transaction is time-stamped to the nearest second,
and marked “buy” or “sell” according to the direction of the market order giving
rise to the transaction. Where a market order is submitted that requires clearing
against limit orders at several different prices, it is recorded as several trades.

We have no record of the volume of trades. Market participants see the same
raw sequence of buys and sells as we are using, without volume. They could in
theory infer volumes of trades partially8 by careful examination of changes in quoted
volumes at best bid and ask in the limit order book. We hope to have the same limit
order book data as market participants in the future; when this becomes available,
we will incorporate volume into the model.

We aggregate simultaneous trades, so that our fitted model makes no distinction
between a buy trade that eats up only the best ask and a buy trade that eats
up several ticks of liquidity. An alternative procedure would have been to add
1 second to all inter-arrival times. This however would have introduced spurious
predictability at short timescales.

Examining a Kernel regression of trading intensity by time of day (Figure 1 -
right), we see something of a U-shaped pattern during the trading day, but note
that the variation in intensity by time of day is less than a factor of two between
0700 and 1500. We therefore fit a time-homogeneous Hawkes model9 to trades
taking place between these times. Noting the separation of timescales between the
self-excitement effect (which turns out to have a timescale of a few minutes) and
variations in intensity due to time of day gives use some confidence that the time-
homogeneous model is reasonable approximation at the proof of principle stage.

We then transform calendar time by gluing consecutive days together, so that

8Accurate volume figures would not be available because of the way that the limit order book is
displayed on EBS dealing screens, and because of the difficulty in distinguishing market orders and
cancellations.

9Time of day effects can be incorporated fairly easily.



1500 on Monday is followed immediately by 0700 on Tuesday in transformed time.
Whilst this procedure will introduce unwanted edge effects, the loss of accuracy
will be small, again because of the separation of timescales. See [6] for a more
accurate model of inter-day effects — the methodology in that paper could easily
be extended to our case.

4.2 Estimation

We now specialise (2) to choose the simplest model which will allow for self- and
cross-excitement:

λbuy
t = µbuy + αbuybuy

∫

u<t

e−βbuybuy(t−u) dNbuy
t + αbuysell

∫

u<t

e−βbuysell(t−u) dN sell
t (23)

λsell
t = µbuy + αsellsell

∫

u<t

e−βsellsell(t−u) dN sell
t + αsellbuy

∫

u<t

e−βsellbuy(t−u) dNbuy
t (24)

and impose symmetry constraints µbuy = µsell =: µ, αbuybuy = αsellsell =: αsame,
αsellbuy = αbuysell =: αcross, βbuybuy = βsellsell =: βsame, βsellbuy = βbuysell =: βcross,
so that we must estimate five parameters. We fit our model to the data to trades
in the week10 commencing 7th May 2005, aggregating simultaneous trades. The
number of trades in the cleaned sample is 2,308.

We estimate our model parameters using maximum likelihood [28], subject to
a non-negativity constraint11 and find that µ = 0.0033s−1, αsame = 0.0169s−2,
αcross = 0, βsame = 0.0286s−1 and βcross is not identified as αcross = 0. We also
estimate a pure Poisson model, αsame = αcross = 0, and find that µ = 0.0080.

The maximised log-likelihood for the Hawkes model exceeds a pure Poisson log-
likelihood by 1,017. The usual likelihood ratio test does not (quite) apply in this
case due to the non-negativity constraints on the parameters. If it did, a likelihood
ratio statistic of more than 7.54 would be sufficient to prefer the Hawkes model over
a pure Poisson model at the 1% level. A likelihood ratio of 1,017 is sufficiently large
that we (informally) prefer the Hawkes model to the null hypothesis of a Poisson
model.

For intensity based point process models in general, the intensity-weighted wait-
ing times

∫ Tn

Tn−1
λbuy(t) + λsell(t) dt between arrival times Tn of consecutive events

have a standard exponential distribution12. Below we show QQ plots of these
intensity-weighted waiting times for the fitted Hawkes model, and the Poisson
model for comparison. We see that the fit for the Hawkes model is satisfactory,
and that the fit for the Poisson model is poor, except perhaps in the upper tail.
An explanation for the acceptable fit of the Poisson model in the upper tail is that
larger waiting times tend to occur at times when the process is unexcited; at these
times the behaviour of a self-exciting process is more Poissonian.

By way of illustration of behaviour of the fitted Hawkes model, the fitted inten-
sities are shown over one-day and one-hour windows in Figure 3.

10We have used a reduced sample to save on computational time — we are not aware of any open-
source software for computing MLEs for Hawkes processes and therefore have used our own MATLAB
code. Numerical optimisation using MATLAB’s fmincon function took ten minutes.

11In such a linear Hawkes model non-negativity of α is required to keep intensity positive at all times
12Another way of saying this is that under the stochastic time change t 7→

∫

t

0
λ(τ)dτ the process

becomes a standard Poisson process
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Figure 2: QQ-plots of integrated intensity (time-changed waiting times) against expo-
nential, for Hawkes model (left) and Poisson model (right)
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Figure 3: Behaviour of fitted intensities over a period of about a day (left) and about an
hour (right). The intensity of selling is shown as negative for ease of interpretation.

4.3 Price impact function for fitted model

We now apply the results of Section 3 to the fitted model to calculate theoretical
expected trade imbalance, covariance density and price impact function.

4.3.1 Prediction of trading intensity

We can use (19) to determine the expected total future imbalance of trades through
time. Figure 4.3.1 shows the variation in expected imbalance over a half hour
period. The highest expected imbalance in the sample was 12.4 trades and its time
weighted mean absolute value was 0.55 trades. It should be stressed that if our
price formation model (13) is correct, then there is no money to be made out of
this predictability, as it is already impounded in the price.
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Figure 4: Expected total future imbalance of buy over sell trades, shown over a period
of about half an hour

4.3.2 Covariance density

We calculate the conditional intensities of buys and sells following a buy using
(11). We compare this fitted parametric estimate to the empirical histogram of
conditional arrival rates in Figure 5. It seems that our model and/or estimation
procedure has failed to pick up on a small cross-exciting effect. It also seems that
the unconditional mean intensity of the fitted model is a bit too low. Neither of
these problems affects the substance of what follows.
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Figure 5: Conditional intensity of buys (left) and sells (right) following a buy, empirical
(red/blue) and fitted (green/magenta)

4.3.3 Price impact function

Since αcross = 0, the price impact function has the form (22), with α = αsame,
β = βsame, with θ to be determined. We show (Figure 6) the price impact function
with θ normalised to one. The theoretical initial price impact of a trade is around
2.4 times its permanent impact. This ratio, equal to β/(β − α) in the model with
no cross-excitement, is an important characteristic of the market. It can also be
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Figure 6: Direct (lower line) and total (upper line) impact on buy intensity of a buy
(left); corresponding price impact function (right)

estimated in a trade time models via the autocorrelation function of buys and sells
written as a sequence of 1s and −1s. A value of one would imply that a buy trade
does not predict any further net imbalance of buys and sells; A value of less than
one would imply that a buy trade tends to be followed by an imbalance of sells
over buys. Preliminary investigations of other FX currency pairs indicate that 2.4
is relatively high but not atypically so.

5 Trading optimisation

We now turn to the problem faced by a trader in the market described above. We set
out to model the trader’s dilemma: trade too fast and be penalised by unnecessary
market impact; trade too slowly and run the risk of adverse price movements before
completing the trade. It is intuively clear that the shape of I determines the cost
of trading fast relative to trading slowly: the greater the difference between I(0)
and I(∞), the greater the potential cost saving from waiting a long time between
trades; and the more quickly I decays the less time we need to wait between trades
so that most of the price impact is dissipated before we put in the next trade —
we will formalise this below. The risk part of the model can also be extracted from
the dynamics discussed above, but this is non-essential and we choose a more basic
model of risk.

Throughout this section we assume that the trader measures performance rela-
tive to the mid price of the asset at the time he receives the instruction to trade.
We assume further that he has an exponential utility function with risk aversion
parameter γ, so that he aims to maximise EP − γVP , where P is the average price
realised for the trade13.

13This requires the distribution of prices to be Normal; clearly price movements caused by trades are
discrete and so the distribution is not Normal. More significantly, the volatility clustering inherent in
self-exciting models implies that price movements would not even be Normal in a continuous time limit.



5.1 Modelling price as a controlled point process

We now discuss a trade path optimisation problem in the spirit of the one presented
in [2]. A trader with initial inventory14 Y0 tries to maximise sale price penalised by
some risk term if he holds inventory for too long. In our model, trading is discrete;
we choose the units of Y0 so that the the volume of each trade is one; we call this
volume “standard trade size”. Our trader is therefore required to sell his inventory
in Y0 discrete trades, at times 0 = τ1 ≤ ... ≤ τY0

. For simplicity we consider the
problem where τ1 ≤ ... ≤ τY0

are to be determined at the outset of trading, so that
we think of them as deterministic rather than random stopping times15.

We assume bid price16 dynamics of the form:

Pt = P0 +

∫ t

0
I(t − u)dFu +

∫ t

0
I(t − u) dYu . (25)

The second term represents others’ trades, the third our own. Note that we employ
the convention that if we need to sell, Y0 > 0 so that dYu = −

∑Y0

n=1 δ(τn), so
the contribution of our trades to price is negative. Implicit in the application of
the propagator I to both our trades and others’ trades is the assumption that the
market maker (i.e. the rest of the market) believes that the sum of our trades and
everyone else’s is a Hawkes process with the parameters estimated above.

Time t = 0 corresponds to the time our trader receives the instruction to trade.
(25) does not include any history of others’ trading before this time. We could
incorporate a history of others’ trading by evaluating the second term in (25) from
some time in the past. If we did this, the exact optimal trading strategy would
depend on the history of trades before time zero, but the approximation (28) below
would eliminate this dependence.

5.1.1 Expected price impact

Consider the component of the price process that is not caused by our own trades:

Qt = P0 +

∫ t

0
I(t − u) dFu . (26)

By definition of I, Q is a martingale, although it has non-constant instantaneous
variance due to the self-exciting nature of F . The expected price of a trade at time
t then depends only on the effect of our own trading

∫ t

0 I(t − u)dYu, so that

E(Y0P ) = Y0P0 −

Y0
∑

i=1

i
∑

j=1

I(τi − τj) . (27)

5.1.2 Accounting for risk

In order to produce a convenient form for the risk term VP , we approximate Q
by a random walk with constant volatility17 σ. So, given our agent’s own trading

14This position might have arisen from an investment bank’s client, for example.
15Although we suspect that for the same reasons as outlined in [2], the solutions of the deterministic

and stochastic optimisation problems coincide in the exponential utility case.
16Since the bid-mid spread is constant in this model, it does not really matter whether we model mid

or bid. The spread can be thought of as an unavoidable cost.
17This removes the path-dependency of optimal selling strategy
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Figure 7: Linear model of controlled price process. The solid line is the price process, the
dotted line the effect of our agent’s trades and the mixed line a random walk representing
the effects of others’ trades. The units of time and price are arbitrary.

times τ1, ..., τY0
we can write the price process as

Pt ≈ P0 + σZt −
∑

τi<t

I(t − τi) , (28)

where Zt is (for example) a standard Brownian motion18, and σ is to be determined
(or rather subsumed into the risk aversion coefficient). This model is illustrated in
Figure 7. We then have

V(Pt|P0, τ1, ...τY0
) ≈ σ2t , (29)

so that for a trading strategy τ1, ...τY0

V(Y0P ) ≈ V(

Y0
∑

i=1

Pτi
) =

Y0
∑

i=1

(Y0 − i + 1)2(τi − τi−1) . (30)

5.2 Optimisation

We then consider the usual trading mean-variance optimisation

max
τ1<...<τY0

E(

Y0
∑

i=1

Pτi
) − γV(

Y0
∑

i=1

Pτi
) , (31)

or equivalently19

max
τ1<...<τY0

−

Y0
∑

i=1

i
∑

j=1

I(τi − τj) + γσ2
Y0
∑

i=1

(Y0 − i + 1)2(τi − τi−1) . (32)

Even for nice I such as the exponential for in (21), an analytic solution of (32) is not
possible, but it is relatively easy to solve numerically, for example by a quasi-Newton
method with a barrier function [17] to deal with the constraint 0 < τ1 < ... < τY0

.

18The important thing is that Z should have independent increments with variance ∆t.
19We are taking the optimal trading times τi to be deterministic.



5.2.1 Parameterisation for EUR/PLN

We now solve the test problem of selling ten standard lots in EUR/PLN. The
average trade size in the market is of order e1m so ten lots corresponds to e10m.
We scale price such that θ = 1. Regressions indicate that in fact the permanent
price impact of a trade in this market is 0.42 ticks20, so our price unit θ can be
interpreted as this amount. The one remaining parameter is γσ2, which we tune to
show conservative, average and aggressive trading strategies. Practitioners can of
course measure σ, and will have their own views about an appropriate value for γ.

5.3 Results

The results of solving (32) with these parameters are displayed below in two forms,
for various values of γσ2, corresponding to a highly risk averse, typically risk averse
(in a sense discussed below) and relatively risk-tolerant trader. The traders are
assumed to start with an inventory of ten units at time zero. The top-left hand
graph in Figure 8 shows their inventory as a function of time. The more risk-averse
the trader, the more quickly they dispose of their inventory. The rest of the Figure
shows the expected price impact of their trading strategies, and the average price
per unit they expect to pay. We see that for the risk-averse, impatient trader,
the price change is expected to overshoot its equilibrium value of minus ten, and
the average price received is considerably less than this equilibrium value; for the
“average” trader, the average price paid is around the equilibrium value; for the
patient trader, the average price paid is less. In all cases, more than one unit of
the trade is executed immediately at t = 0; this is discussed further below. For
comparison, we also show the solutions of (32) for Y0 = 4, with the same levels of
risk aversion. For the two more risk-averse traders, these solutions coincide, and
require immediate sale of all four units.

5.4 Discussion

Firstly note the recommendation of these models that a large chunk of the trade
is executed immediately at the start of the trading period, followed by a stream of
smaller units throughout the rest of the period. This is consistent with conversations
with traders, and results reported in [27]. However, it also highlights and important
shortcoming of our model: the linear specification for the price impact function (16),
(22) carries with it the implication that price realised for a simultaneous trades of
multiple units is a linear function of volume21. There is significant debate in the
literature regarding the shape of this temporary price impact function (e.g. [21],
[15]), which is related to the average shape of the liquidity profile in the limit order
book. Without going into the details, (16) implies that the profile of standing
liquidity is constant out to infinity. We do not currently have any data on the
liquidity profile in this market, but common sense dictates that liquidity per price
tick must become thinner after a certain distance from best bid or ask, so that linear
instantaneous price impact must break down at some stage. We must therefore be
very careful in applying the results of models such as this one, which may very

20The tick size is 0.0005 Zloty Euro−1, and θ is measured to be 0.00021 Zloty Euro−1 Trade−1.
21As can be seen by letting the inter-trade time tend to zero
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Figure 8: Top left: Schedules for selling ten units for three different levels of risk aversion:
γσ

2 = .1 (lower line),γσ
2 = .01 (middle line), γσ

2 = .001 (top line); expected price
impact of these three strategies over time, showing average price paid (dotted flat line)
and eventual price impact (solid flat line) - γσ

2 = .1 (top right), γσ
2 = .01 (bottom left),

γσ
2 = .001 (bottom right)

easily recommend an initial trade of a size which is either impossible or can only
be completed at a very unfavourable price.

There are a number of reasons not explored in our simple model why the market
might not offer linear instantaneous price impact. These include richer information
effects, market-maker risk aversion and inefficient or uncompetitive market-making.
An alternative suggestion is that the relationship between volume and expected fu-
ture trades is itself nonlinear. Whether a non-linear version of (16), derived for
example from a nonlinear self-exciting process, could be squared with the instanta-
neous price impact function implied by observed limit order books is an interesting
area for future research.

We now turn to the question of how well our traders have done in disguising
their trades. If they were obliged to disclose their position to the market maker
before commencing trading, they would realise a (normalised) price impact cost of
N . We first consider N = 10; noting that the average cluster size in this market
is 2.4 trades, trades of this size are probably relatively rare. Intuitively we would
expect to be able to complete the first few tranches of such a trade cheaper than
the final equilibrium price, because the market does not expect a cluster of this
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Figure 9: Top left: Schedules for selling four units for three different levels of risk aversion:
γσ

2 = .1 (left hand line),γσ
2 = .01 (left hand line also), γσ

2 = .001 (right hand line);
expected price impact of these three strategies over time, showing average price paid
(dotted flat line) and eventual price impact (solid flat line) - γσ

2 = .1 (top right), γσ
2 =

.01 (bottom left), γσ
2 = .001 (bottom right)

size. This is the case in our model — the first four trades do not push the price
above the final price even if done simultaneously. Even the most risk-averse trader,
who completes nine out of ten trades immediately and the last trade a second later,
does not pay hugely over the odds — the market-maker takes a small profit; the
least risk-averse trader manages to transact at a discount to fair price, causing the
market-makers to lose money. For N = 4, i.e. slightly larger than the typical cluster
size, we see that even for the lowest level of risk aversion investigated, the trader
pays over the odds, and the market-maker realises a profit. In fact, we must set
γ = 0.0001 for the trader realise the final price on average, and the market-maker
break even (not shown in graphs). For N ≤ 3, however patient he is, a trader will
always pay over the odds22.

We now consider whether a population of traders behaving as prescribed by
our model could (at least approximately) generate the kind of point process we
have assumed. Let us suppose for the sake of exposition that the sole reason

22The limiting average price as time between trades tends to infinity in the case N = 3 is (2.4 + 3.4 +
4.4)/3 = 3.4 > 3



for the observed clustering of trades is the splitting of large trades into smaller
tranches23. Then by solving the traders’ problem in the manner described above,
and aggregating the actions of a population of heterogeneous traders, one could
arrive at aggregate order arrival dynamics. Key parameters in such a model are
the distribution of size of trades to be split and trader risk-aversion, which governs
speed of execution. If these dynamics were exactly as assumed in the original
solution of the market-makers’ problem, we would have a game-theoretic solution
to the interaction between market-makers and order-splitting traders.

We stress again that our paper does not purport to offer such a game-theoretic
solution of the interaction between traders and market-makers. Putting aside the
obvious difficulties in solving such a game, in order to parameterise it we would
need to observe or infer the statistical properties of the client orders arriving at
dealing desks in the market, as well as distribution of risk aversion parameters
for the traders executing these orders. Even if we could do this, it would not be
helpful if some of the traders were acting sub-optimally. Our methodology has
been to subsume all of these concerns into the tractable yet flexible class of linear
self-exciting processes.

Because of the limitations of linearity and the exponential parametric form, our
market-maker is not as clever as he might be — he cannot detect nonlinear patterns
and even some linear patterns such as periodicities24 that may be present in the
trade arrivals data. We do not know at the moment how financially significant such
patterns might be to market-makers.

6 Summary and Future Work

In this paper we outlined how a rational risk-neutral market-maker would react to a
linear self-exciting market order arrivals process. We showed that the price impact
function is also linear, and that closed forms are available when the self-excitement
function is exponential. These theoretical price impact functions were investigated
in the context of a model for executing a large trade under risk aversion.

In the future we plan to investigate whether introducing nonlinearities in the
trade arrival intensities results in a better fit to the data. If so, we will investigate
the theoretical form of price impact of a trade for such nonlinear models, and apply
this to the trade splitting optimisation model. We also plan to investigate non-
exponential forms for the self-excitement function in the linear case, including the
possibility of long memory effects, and their consequences for price impact function
and trade splitting optimisation. We hope to obtain data on volumes shortly, and
investigate the effect of trading volume “marks” in the Hawkes model of arrivals.

Another line of possible work concerns whether, and by what mechanism, real
limit order book markets implement the price impact behaviour outlined. If they
do not, it may indicate an inefficiency that can be exploited in detailed microstruc-
tural trading algorithms. If market-makers are able, in aggregate, to implement

23[16] present a model linking order splitting strategies to the autocorrelation of the sequence of buy
and sell trades (which works is trade time, but the ideas would apply in calendar time with minor
adjustment)

24An simple example of periodicity from the early days of program trading in equities: early order-
splitting engines sometimes traded equal amounts at regularly spaced intervals during the day. Market
players then developed “sniffers” based on spectral analysis to detect and take advantage of these pat-
terns.



effectively the linear filter described in this paper, we would like to establish the
institutional and / or behavioural features that allow them to do so.
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